2022Äê5ÔÂ13ÈÕ£¬±±¾©´óѧδÀ´¼¼ÊõѧԺ·Ö×ÓҽѧÑо¿Ëù¡¢±±´ó-Ç廪ÉúÃü¿ÆÑ§ÁªºÏÖÐÐÄ¡¢¹ú¼ÒÉúÎïҽѧ³ÉÏñÖÐÐijÂÀ×Ñо¿×éÔÚNature CommunicationsÔÓÖ¾·¢±íÁËÌâΪ¡°Structural identification of vasodilator binding sites on the SUR2 subunit¡±µÄÂÛÎÄ¡£¸ÃÑо¿½âÎöÁËSUR2ÓëÁ½ÖÖѪ¹ÜÀ©ÕżÁ£¨p1075ºÍLev£©¸´ºÏÎïµÄ¸ß·Ö±æ½á¹¹£¬½ÒʾÁËÕâÀàС·Ö×ÓÒ©ÎïÓëSUR2µÄÏ໥×÷ÓÃģʽ¡£

ATpÃô¸Ð¼ØÀë×ÓͨµÀ£¨KATp£©ÊÇÓÉKir6ÑÇ»ùºÍSURÑÇ»ù×é³ÉµÄÒìÔ´°Ë¾ÛÌ壬¿É±»Ï¸°ûÄÚATpÒÖÖÆ£¬Mg-ADp¼¤»î1¡£KATpͨµÀÔÚÄÔ¡¢ÒȵººÍ¼¡ÈâµÈ×éÖ¯Öй㷺±í´ï£¬Í¨¹ý¸ÐÊÜϸ°û´úлˮƽµ÷½ÚÉúÀí¹¦ÄÜ¡£KATpͨµÀ»ùÒòÍ»±ä¿Éµ¼ÖÂÐÂÉú¶ùÌÇÄò²¡¡¢ÏÈÌìÐÔ¸ßÒȵºËØÑªÖ¢2¡¢À©ÕÅÐÔÐÍÐ¡3ºÍ¿²Í¼×ÛºÏÕ÷4,5µÈһϵÁм²²¡£¬ÒÔKATpͨµÀΪ°ÐµãµÄ¶àÖÖÒ©ÎïС·Ö×ÓÒÑÅú×¼Ó¦ÓÃÓÚÁÙ´²£¬ÓÃÓÚÖÎÁƼ²²¡¡£

KATp¿ª·Å¼Á£¨KCO£©ÊÇÒ»ÀàÔÚMg-ATp»òMg-ADp´æÔÚÏ¿ɼ¤»îKATpͨµÀµÄС·Ö×Ó¡£KATpͨµÀµÄ¿ª·ÅʹÖÊĤ³¬¼«»¯£¬½µµÍϸ°ûµÄÐË·ÜÐÔ£¬²¢ÒÖÖÆÏ¸°ûÄÚ¸ÆÐźŴ«µ¼6¡£¸ù¾ÝSURÑÇ»ùÑ¡ÔñÐÔ£¬KCO¿É·ÖΪÈýÀࣺSUR1ÌØÒìÐÔ¿ª·Å¼Á£¬ÈçNN414£¨Ìæ·ÒÄÇຣ©£»SUR2ÌØÒìÐÔ¿ª·Å¼Á£¬Èçp1075 ºÍlevcromakalim (Lev)£»ÒÔ¼°·ÇÑ¡ÔñÐÔ¿ª·Å¼Á£¬Èç¶þµªàº¡£¶þµªàºÄܼ¤»îÒȵºKATpͨµÀ£¬¿ÉÓÃÓÚ×è¶ÏÒȵºËØ·ÖÃÚ£¬Ìá¸ßѪÌÇˮƽÒÔÖÎÁƵÍѪÌÇÖ¢¡£SUR2ÌØÒìÐÔ¿ª·Å¼Á¿ÉËɳÚѪ¹Üƽ»¬¼¡£¬Ò²±»³ÆÎª¡°Ñª¹ÜÀ©ÕżÁ¡±£¬ÔÚÁÙ´²ÖÐÓ¦ÓÃÓÚÖÎÁƸßѪѹ¡¢ÐĽÊÍ´ºÍÐÄÂÉʧ³£µÈÐÄѪ¹Ü¼²²¡6¡£ÕâЩҩÎï¼æÓдٽøÃ«·¢Éú³¤µÄ×÷Ó㬹㷺µØÓÃÓÚÖÎÁÆÍÑ·¢£¬ÈçOTCÃ×ŵµØ¶ûµÈ¡£´ËÍ⣬SUR2ÌØÒìÐÔ¿ª·Å¼ÁÔÚÆäËû×éÖ¯¼²²¡µÄÁÙ´²ÖÎÁÆÓ¦ÓÃÖÐÒ²ÏÔʾ³öǰ¾°£¬°üÀ¨Ö§Æø¹ÜÀ©ÕÅ¡¢°òë×ËɳÚ¡¢ñ²ðïºÍÇà¹âÑÛµÈ7¡£È»¶ø£¬ÕâЩѪ¹ÜÀ©ÕżÁÊÇÈçºÎ½áºÏ²¢¼¤»îKATpͨµÀÈ´ÈÔȻδ֪¡£

ͼ1£ºKCOÓëSUR2¸´ºÏÌå½á¹¹

¸ù¾Ý¸´ºÏÌå½á¹¹£¬³ÂÀ×Ñо¿×é·¢ÏÖKCOµÄ½áºÏλµã£¨¼´ÃüÃûΪKCOS£©£¬Î»ÓÚSUR2ÑÇ»ùµÄ¿çĤÂÝÐýÖ®¼ä£¨TM10¡¢TM11¡¢TM12¡¢TM14ºÍTM17£©¡£p1075ºÍLev½áºÏÔÚSUR2ÏàͬλÖÃÉÏ£¬ÕâÓëp1075¡¢Äá¿ÉµØ¶ûºÍ¶þµªàºÔÚSUR2BÉϾºÕùÐÔ½áºÏÐÐΪһÖÂ8¡£

ͼ2£ºKATpͨµÀ¿ª·Å¼Áp1075ºÍLev½áºÏλµã

´ËÍ⣬ҩÎ︴ºÏÌå½á¹¹½ÒʾÁËSUR2Ñ¡ÔñÐÔKCOµÄ½á¹¹ºÍ»îÐԵĹØÏµ¡£p1075 ÊÇßÁÄǵضûµÄÀàËÆÎ¶ÔSUR2ÑÇ»ù¾ßÓиßÇ׺ÍÁ¦¡£p1075µÄ¶þ¼×»ù±û»ùÌæ»»ÁËßÁÄǵضûµÄÈý¼×»ù±û»ù£¬Ê¹µÃp1075ÓëÓÉI545¡¢V548¡¢V579ºÍI1004ÐγɵÄÊèË®¿Ú´üÏ໥×÷ÓøüÇ¿½ø¶øÏÔÖøÌá¸ßÒ©ÎD»îЧ¹û9¡£×÷Õßͨ¹ýÍ»±äʵÑé½øÒ»²½Ö¤Ã÷£¬SUR2µÄI1004ºÍT1253¶ÔÓÚp1075ºÍLevµÄ¼¤»îЧ¹û¶¼ºÜÖØÒª£¬½«°±»ùËáÍ»±äΪSUR1É϶ÔÓ¦µÄ²Ð»ù£¨I1004L ºÍT1253M£©µ¼ÖÂÒ©ÎD»îЧ¹û¼õÈõ¡£ÔÚMg-ADpÓëSUR2µÄNBD2½áºÏºóNBDµÄ¶þ¾Û»¯£¬½ø¶øÒýÆðTMD1ºÍTMD2µÄ±ÕºÏ¡£KATp¿ª·Å¼ÁÓëTMD1ºÍTMD2Ï໥×÷Ó㬴ٽøTMD½øÈë±ÕºÏ״̬£¬±íÃ÷MgºËÜÕËáºÍKATp¿ª·Å¼ÁÔÚ¼¤»îKATpͨµÀʱ´æÔÚÕýЭͬ×÷ÓÃ10,11¡£

ͼ3£ºKCO¼¤»îSUR2 µÄÄ£ÐÍ

´Ëǰ¶ÔÒȵºKATp£¨SUR1-Kir6.2£©µÄ½á¹¹Ñо¿±íÃ÷£ºSUR1µÄNBD¶þ¾Û»¯¹¹ÏóÓëKATpͨµÀ¼¤»îÏà¹Ø12-15£¬¶øSUR1µÄNBD·ÖÀëµÄ³¯ÄÚ¹¹ÏóÓëKATpÒÖÖÆÏà¹Ø13,16-18¡£±¾Ñо¿¹¤×÷·¢ÏÖº¬ÓÐSUR2µÄKATpͨµÀ¾ßÓÐÀàËÆµÄÏÖÏ󣬱íÃ÷SUR1ÐͺÍSUR2ÐÍKATpͨµÀÓй²Í¬¼¤»î»úÖÆ¡£¸ÃÑо¿ÎªÉè¼ÆºÍÓÅ»¯KATp¿ª·Å¼ÁÓÃÓÚÖÎÁÆÏà¹Ø¼²²¡´òÏÂÁË»ù´¡¡£

±¾ÏîÑо¿µÄµÚÒ»×÷ÕßΪ±±¾©´óÑ§Ç°ÑØ½»²æÑ§¿ÆÑо¿ÔºCLSÏîÄ¿²©Ê¿Ñо¿Éú¶¡µä£¬³ÂÀ×ΪͨѶ×÷Õߣ¬²©Ê¿ºóÎ⾪Ïã²ÎÓëÁËÊý¾ÝÊÕ¼¯¡£¾§Ì©¿Æ¼¼µÄ¶ÎÐÂÀö¡¢ÂíËÉÁäºÍÀµÁ¦ÅôÍê³ÉÁ˰üÀ¨·Ö×Ó¶¯Á¦Ñ§Ä£ÄâÔÚÄڵļÆËã¹ý³Ì¡£±¾¹¤×÷»ñµÃ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðί¡¢±±´ó-Ç廪ÉúÃü¿ÆÑ§ÁªºÏÖÐÐÄÒÔ¼°±±¾©´óѧÀî¸ï-ÕÔÄþÉúÃü¿ÆÑ§ÇàÄêÑо¿»ù½ðµÄ¾­·ÑÖ§³Ö¡£¸Ã¹¤×÷Àä¶³µç¾µÑùÆ·ÖÆ±¸¡¢É¸Ñ¡ºÍ²É¼¯ÔÚ±±¾©´óѧÀä¶³µç¾µÆ½Ì¨ºÍ±±¾©´óѧµç¾µÊÒÍê³É£¬µÃµ½ÁËÀîѩ÷¡¢¹ùÕñçô¡¢Çزý¶«¡¢ÉÛ²©¡¢ÅáϼºÍÍõ¹úÅôµÈÈ˵İïÖú¡£¸ÃÏîÄ¿µÄÊý¾Ý´¦Àí»ñµÃÁ˱±¾©´óѧCLS¼ÆËãÆ½Ì¨¼°Î´Ãû³¬ËãÆ½Ì¨µÄÓ²¼þºÍ¼¼ÊõÖ§³Ö¡£

1. Nichols, C. G. KATp channels as molecular sensors of cellular metabolism. Nature 440, 470-476, doi:10.1038/nature04711 (2006).

2. pipatpolkai, T., Usher, S., Stansfeld, p. J. & Ashcroft, F. M. New insights into KATp channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 16, 378-393, doi:10.1038/s41574-020-0351-y (2020).

3. Bienengraeber, M. et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATp channel gating. Nat. Genet. 36, 382-387, doi:10.1038/ng1329 (2004).

4. Harakalova, M. et al. Dominant missense mutations in ABCC9 cause Cantu syndrome. Nat. Genet. 44, 793-796, doi:10.1038/ng.2324 (2012).

5. van Bon, B. W. et al. Cantu syndrome is caused by mutations in ABCC9. Am. J. Hum. Genet. 90, 1094-1101, doi:10.1016/j.ajhg.2012.04.014 (2012).

6. Jahangir, A. & Terzic, A. K(ATp) channel therapeutics at the bedside. J. Mol. Cell. Cardiol. 39, 99-112, doi:10.1016/j.yjmcc.2005.04.006 (2005).

7. Roy Chowdhury, U., Dosa, p. I. & Fautsch, M. p. ATp sensitive potassium channel openers: A new class of ocular hypotensive agents. Exp. Eye Res.158, 85-93, doi:10.1016/j.exer.2016.04.020 (2017).

8. Bray, K. M. & Quast, U. A specific binding site for K+ channel openers in rat aorta. J. Biol. Chem. 267, 11689-11692 (1992).

9. Hambrock, A. et al. ATp-Sensitive K+ channel modulator binding to sulfonylurea receptors SUR2A and SUR2B: opposite effects of MgADp. Mol. pharmacol.55, 832-840 (1999).

10. Schwanstecher, M. et al. potassium channel openers require ATp to bind to and act through sulfonylurea receptors. EMBO J. 17, 5529-5535, doi:10.1093/emboj/17.19.5529 (1998).

11. Reimann, F., Gribble, F. M. & Ashcroft, F. M. Differential response of K(ATp) channels containing SUR2A or SUR2B subunits to nucleotides and pinacidil. Mol. pharmacol. 58, 1318-1325, doi:10.1124/mol.58.6.1318 (2000).

12. Li, N. et al. Structure of a pancreatic ATp-Sensitive potassium Channel. Cell 168, 101-110 e110, doi:10.1016/j.cell.2016.12.028 (2017).

13. Wu, J. X. et al. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATp-sensitive potassium channels. protein Cell 9, 553-567, doi:10.1007/s13238-018-0530-y (2018).

14. Wang, M. et al. Structural insights into the mechanism of nucleotide regulation of pancreatic K<sub>ATp</sub> channel. 2021.2011.2029.470334, doi:10.1101/2021.11.29.470334 %J bioRxiv (2021).

15. Zhao, C. & MacKinnon, R. Molecular structure of an open human KATp channel. proc. Natl. Acad. Sci. U. S. A. 118, doi:10.1073/pnas.2112267118 (2021).

16. Martin, G. M., Kandasamy, B., DiMaio, F., Yoshioka, C. & Shyng, S. L. Anti-diabetic drug binding site in a mammalian KATp channel revealed by Cryo-EM. Elife 6, doi:10.7554/eLife.31054 (2017).

17. Martin, G. M. et al. Cryo-EM structure of the ATp-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife 6, doi:10.7554/eLife.24149 (2017).

18. Ding, D., Wang, M., Wu, J. X., Kang, Y. & Chen, L. The Structural Basis for the Binding of Repaglinide to the pancreatic KATp Channel. Cell Rep 27, 1848-1857 e1844, doi:10.1016/j.celrep.2019.04.050 (2019).